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been applied to many hydrates (El Saffar, 1966, 1968).
Some of these hydrates have since been studied by
neutron diffraction. Detailed comparison shows that
the experimental vectors obtained by n.m.r. are in
rather good agreement with the corresponding neutron-
diffraction results. The consistency of the p—p vectors
given in Table 1 with the H-bonding scheme suggested
by the X-ray authors, verifies the correctness of the
H-bonding scheme and testifies to the validity of the
n.m.r. method.

The conflict between the n.m.r. results reported here
and those of Visweswaramurthy (1963) may be resolved
by modifying Visweswaramurthy’s Fig.2 from which
he obtained all his results. As the Figure stands, the
Pake curves shown (c axis rotation) do not satisfy the
point-group symmetry since those curves are not sym-
metrical about the g axis. The point-group requirement
is satisfied provided the Pake curve labelled 2 is dis-
carded and the @ scale is shifted so that a is at #=20
or —30°. If the shift —30° is accepted, the Pake curves
labelled 1 and 3 in Visweswaramurthy’s Fig.2 conform
with the results reported here.

Distances and angles relating to the hydrogen bonds
are given in Table 3. It is interesting to note a cor-
respondence between the OH---X distances and the
related / O-H---X for MgS,0;.6H,0. The shortest
OH---S bond (3-195A) and the shortest OH---O
bond (2-658 A) belong to H,Orr. Equal ‘bending’ of
these bonds (/. O-H---X=8°) may be due to the fact
that the OH---S and OH---0O interactions in this case
are of equal strength. The same may be said about the

Acta Cryst. (1969). B25, 1711

1711

interactions relating to H,Or. The angles and distances
relating to H,Orrr given in Table 3 agree with the gen-
eral observation that shorter hydrogen bonds tend to
deviate less from linearity than longer ones (Hamil-
ton, 1962). This tendency has been recently explained
(Chidambaram & Sikka, 1968) on the basis of a mod-
ified Lippincott-Schroeder potential function for the
hydrogen bond.

Hydrogen bonds of the type OH---S, have not been
studied, to the author’s knowledge, by neutron diffrac-
tion. It is, therefore, considered useful to give the
angles and distances relating to OH---S bonds found
in Na,S,0;.5H,0. This compound was investigated
by Taylor & Beevers (1952) with the use of X-rays,
and by Murty & El Saffar (1962) by the use of n.m.r.
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A further study is made of the three-dimensional polyhedra of part VII which conform to the equation
Z fald—Q2—n) 2-p)=2p2—1)

for tessellations (n, p), where ¢ is the number of tunnels connecting each repeat unit to its neighbours.
An investigation is made of the relation between a 3-D polyhedron and its complement, (i.e. the space
not occupied by the polyhedron) and of those polyhedra which can be constructed with plane equilateral
triangular faces, the 3-D homologues of the triangulated Platonic solids.

In part VII (Wells & Sharpe, 1963) a study was made
of tessellations (n,p) for which p exceeds the highest
value attainable in a plane net. For example, in the
series (3, p) the cases p=3,4, and 5 correspond to con-
vex polyhedra, and p=6 to the plane triangulated net.

It was shown that certain tessellations (3,p) with p>7
may be inscribed on infinite surfaces which arise by
uniformly inflating the links of 3-dimensional nets to
form systems of tunnels which meet at the points of the
original net. The links of the tessellations are geode-
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sics on surfaces of continuously varying curvature. The
models described in part VII were made with (curved)
links of equal length. These 3-D polyhedra may alter-
natively be described as built of polyhedral units con-
taining Z points placed at the points of a 3-D net and
joined through a number (¢) of tunnels to identical
units situated at adjacent points of the net.

The families (3, p) to (6, p) inclusive were considered
in turn for t=3,4,5,6,8, and 12, but for n>7, only the
systems (n,3) (3-connected nets) were listed (Table 3).
(For the sake of consistency the systems (5,6) for
t=10+4m and (7,4) for =8+ 3m should be included
as having Z integral and Z>¢, though it seems ex-
tremely unlikely that any of them could be realized. The
system (10,3) with =35 should be removed from this
Table because its reciprocal has Z non-integral.) Ex-
amples were not given of all polyhedra, and in partic-
ular no detailed study was made of 12-tunnel systems.
Because a number of new polyhedra have since been
made and also because it is convenient to see at a glance
which tessellations can be inscribed on a surface derived
from a particular net, the information now available
for triangulated polyhedra is summarized in Table 1.
Repeat units of four new polyhedra are illustrated (as
stereo pairs) in Figs.1-3.

We now consider two aspects of these 3-D polyhedra.
The first is the relation between the polyhedron and
the space not occupied by the polyhedron, which may
be described as the complementary polyhedron. The
second concerns the geometrical shape of the polyhe-
dra. They were illustrated in part VII as tessellations
on curved surfaces, the polygons being equilateral but
not equi-angular, since their edges are curved lines on
surfaces of varying curvature. Certain of the polyhedra
of Table 1 can be realized with plane equilateral (and
hence equiangular) faces, p n-gons meeting at each
point (vertex). Such bodies may be described as regular
3-D polyhedra, for they are the homologues of the five
regular finite solids. Only the triangulated bodies will
be considered in detail in this paper.

Complementary 3-D polyhedra

If a polygon is defined as a system of connected line

segments, six types of regular polygon are recognized: -

digon, plane n-gon, finite skew polygon (lateral edges
of antiprism), apeirogon (infinite straight line marked
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off in equal segments), plane zigzag, and helical poly-
gon. Two of these define a plane and divide it into two
parts, in one case equal (plane zigzag) and in the other
unequal (plane n-gon). These polygons are 2-connected
systems, finite or infinite. The p-connected tessellations
(p>2) are inscribable on surfaces and may be des-
cribed as polyhedra, of which the three simplest types
are (a) finite (convex) polyhedra (b) infinite plane nets,
and (c) infinite three-dimensional surfaces. These sur-
faces divide the whole of space into two parts. In (a)
the two parts are unequal, in (b) they are equal, and we
shall see that in (c) there may be equal or unequal divi-
sion of space.

We now consider the relation between the two parts
into which space is divided by the 3-D surfaces of part
VII, the polyhedron and its complement. In all cases
we shall suppose that the space not occupied by a 3-D
polyhedronis also a 3-D polyhedron, i.e. any part of the
polyhedron is accessible from any other (without pas-
sing through the surface), and that the same is true of
the complementary polyhedron. This is not necessarily
so, for although the 3-D polyhedron has this property
the complementary space might consist of isolated
volumes, finite, or infinite one- or two-dimensional.
This is easily appreciated by visualizing the types of
hole that may be made in a (supposedly infinite) solid
block. The holes might be discrete finite holes, infinite
one-dimensional (sets of unconnected tunnels), or
infinite two-dimensional systems, equivalent to in-
flated 2-D nets arranged in parallel planes without
connections between one net and another. Models of
these three types are readily constructed from poly-
hedra such as hexagonal prisms or cubes. Since each
3-D polyhedron is based on a 3-D net (see Table 1) this
is also true of complementary polyhedra satisfying the
above criterion. The relation between a 3-D polyhedron
and its complement is therefore the relation between
certain pairs of interpenetrating 3-D nets.

It seems reasonable to distinguish degrees of inter-
penetration of 3D nets. If two cubic (10,3) nets, one
left- and the other right-handed, interpenetrate [Fig.
4(a)}, the connectedness of each point remains the same
(3). If, however, two nets of the same hand interpene-
trate, each point is equidistant from 6 others, though
the helices of the two nets are still distinct [Fig. 4(b)].
Contrast the interpenetration of two diamond nets,
when the helices intertwine around the same axes

Table 1. Triangulated 3-D polyhedra

[1 indicates complementary polyhedron.

Net t 3,7 (3,8)

Cubic (10,3) 3 VIL6(b) VIL11

Diamond 4  X17(ls)  VILI3
VIL12=X.14 (O4)

NbO 4 — VIL15

P 6  VIL6(c) X.9(b) X.18 (Ig)
X.9(c)

I 8 X3 [VIL.15] VIL.18

3.9 3,10 3,11) 3,12)
— T ‘r -
X1=X.13 (Ta) - T -
[Z5¢] - t [Os:]
VIL.20(a) VIL.20(b) 1 -
X.15 (O¢t)
X.2(a)=X.19 (Is:) - 1 X.2(b)=X.16 (Os:)

1 Z non-integral.
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[Fig.4(c)]. If two nets, 4 and B, interpenetrate to the
maximum extent, so that each point of one net is sur-
rounded symmetrically in three dimensions by points of
the other net, we might expect each A4 (B) point in the
composite system to be surrounded by («) a tetrahedral
group of 4B (A), (b) an octahedral group of 6B (4),
or (¢) a cubic group of 8B (A). Case (a) corresponds to
the interpenetration of two diamond nets to form the
I lattice (net), and (c) to the formation of the same net
from two interpenetrating P lattices (nets). The second
possibility, (), where each 4 point is surrounded octa-
hedrally by 6B and each B point octahedrally by 64,
corresponds to the formation of the NaCl structure
from two interpenetrating F lattices. However, this
pair of interpenetrating nets cannot represent a twelve-
tunnel polyhedron and its complement for the follow-
ing reason. Each A (B) point is connected to a number
p, of A (B) points in its own net, by A-A4 (B-B) links.
If A-A and B-B links intersect when the 4 and B nets
interpenetrate, such nets cannot represent the relation
between a 3-D polyhedron and its complement, for the
points of intersection would lie within both the poly-
hedron and its complement. In the NaCl structure the
lines representing the shortest Na—-Na contacts intersect
those representing the corresponding CI-Cl contacts.
There is, however, a pair of nets which can interpene-
trate to give octahedral coordination of both 4 and B

(¢

Fig.4. Pairs of interpenetrating nets: (a) p- and r-forms of
cubic (10,3), (b) two p- (10,3) nets, and (c) two diamond nets.
In (a)and (b)jnumbers indicate heightsas multiples of ¢/8 and
in (c¢) as multiples of c/4.
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points though not of 4 by 6B nor of B by 64. This solu-
tion emerges from the following alternative approach.

Regarding P, I, and F lattices simply as 6-, 8-, and
12-connected nets, we examine how they may be bro-
ken down into two identical interpenetrating nets, or
more generally, into two (or more) identical or non-
identical nets. One case where the two component nets
are different is of special interest in connection with
the polyhedra of part VIIL

The I net gives the two cases noted above, of which
(b) is illustrated in Fig.5(a). The F net may be broken
down into various numbers of interpenetrating nets.
Taking an eightfold cell (in which the coordinates of
the points are those of the special position 32(b) in
Fd3c) we may separate the 32 points into:

4(a) in P4,3;
8(a) in I4,3;

8 6-connected nets:
4 3-connected nets:

or
2 6-connected nets: 16(c) in Fd3, Fd3m, or F4,3.

(The formation of the F lattice by interpenetration of
four 3-connected (10,3) nets may be of interest in con-
nection with magnetic properties of alloys. It is inter-
esting that there are two ways of interpenetrating four
(10,3) nets, the individual (enantiomorphic) nets being
either four D- (or L-) or two D- and two L- nets (Fig.6).

The two 6-connected nets which interpenetrate to
form the F lattice are basically of the diamond type.
The equivalent points 16(c) in Fd3 etc. are the mid-
points of the links of the diamond net, and when joined
as in Fig.7 they outline tetrahedra around the points of
that net. The edges of the tetrahedra form a 6-connec-
ted net. Another way of breaking down the F lattice
into two identical interpenetrating nets is shown in
Fig. 5(b). The two nets are again of the diamond type,
but the interbond angles are two of 90° and four of
120°. This ‘pseudo-diamond net corresponds to the
half-space-filling by rhombic dodecahedra (Fig.8); the
space-filling by rhombic dodecahedra corresponds, as
is well known, to cubic closest packing of equal spheres
(In Fig.8 and subsequent stereo-pairs of 3-D polyhedra
black faces indicate open ends of tunnels, or faces which
will be shared in the infinite polyhedron).

Breakdown of the P lattice into two different nets
is of interest in connection with complementary poly-
hedra [Fig.5(c)]. The large cell contains 8 points, and
the component nets have Z=2 (8-connected body-
centred net) and Z=6 (planar 4-connected NbO net).
This is the case to which reference has already been
made in which a point A of the first net has 6 octahedral
nearest B neighbours and B has (24 +4B) octahedral
nearest neighbours. Examples of pairs of complemen-
tary polyhedra related in this way are included in Table
2. Because of this relation between the 7 and NbO nets
it follows that to every polyhedron based on the NbO
net there is a complementary polyhedron built of iden-
tical 8-tunnel units based on the I net. The converse is
not, however, true. If the 8-tunnel polyhedron has
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cubic symmetry there is a 4-tunnel complementary
polyhedron built of identical repeat units. If on the
other hand the symmetry of the 8-tunnel polyhedron is
lower (e.g. the tetragonal (3,8) of Fig. VIL.18* or the
orthorhombic (3,7) of Fig. X.3t) there is no complemen-
tary polyhedron built of identical 4-tunnel units. The
relation between the complementary 4-tunnel and 8-
tunnel polyhedra in such cases will not be further dis-
cussed in the present paper.

It appears that all pairs of complementary 3-D poly-
hedra are based on one of the following pairs of inter-
penetrating nets:

(i) Two (4-connected) diamond (or‘pseudo-dia-
mond’) nets; '
(if) Two (6-connected) P nets; or

(iii) I (8-connected) and NbO (4-connected) nets.
In (i) and (i) the two complementary polyhedra may
be identical or they may be different; in (iii) the poly-
hedron and its complement are necessarily different in
shape. Some examples are given in Table 2.

We shall see shortly that only a limited number of
polyhedra can be built with all faces regular plane
n-gons. In cases where this is possible it is important,
when discussing the relation between the polyhedron
and its complement, to distinguish between the poly-
hedron (n,p) built with curved (equilateral) faces and
the topologically similar (n,p) built with plane equi-
lateral faces. For example, Fig.VIL.10 (b) and (c)

* Fig.18 of Part VII.
T Fig.3 of Part X (present paper).

THE GEOMETRICAL BASIS OF CRYSTAL CHEMISTRY. X

showed repeat units of two (topologically different)
6-tunnel (3,8) polyhedra; they are repeated here as
Fig.9 (b) and (c). The unit () has six identical tunnels
and the corresponding 3-D polyhedron is different from
its complement. This particular polyhedron can be
built with plane equilateral faces, when it is equivalent
to a system of snub cubes (alternately b- and L-) joined
through their square faces (Fig.10). The complement
is the regular 3-D polyhedron Iy of Fig.18 which has
a quite different shape and volume, as in the case of
the curved-face polyhedron and complement. On the
other hand, the unit (¢), which has the two polar tun-
nels larger than the four equatorial ones, forms a
(curved-face) polyhedron which is identical to its
complement (though the two are differently oriented),
but this polyhedron cannot be built with regular plane
faces.

Regular and semi-regular 3-D polyhedra

From Euler’s relation for convex simply-connected
polyhedra, Ny—N;+ N,=2, the following equations
can be derived: :

Pp=3: 342+ FO—fi—  ...=12 (D)
P=4:2LT0f—2fi—4fs—6H— ...=16 (2
p=5: fi—2fim5fs—8fs—11f— ...=20  (3)
p=6: 0fy—4fy—8fs— 12f; — =24 (@

(c)

Fig.5. (a) I net as two interpenetrating diamond nets, (b) F net as two interpenetrating pseudo-diaimond nets, and (c) P lattice as
interpenetrating I and NbO nets.
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or more generally

2 fal4—Q2—n)2—p)]=4p,

where f3, is the number of #-gon faces of which p meet
at each vertex. It follows that there are only five finite
polyhedra having all faces of the same kind and all
vertices p-connected. The most symmetrical forms of
these polyhedra are the regular (Platonic) solids:
3-connected: tetrahedron, (3,3), fy=4, cube, (4,3),
ﬁi=6’

and dodecahedron, (5,3), fs=12;
octahedron, (3,4), /;=28; and
icosahedron, (3,5), f3=20.

4-connected:
5-connected:

These equations also show that there can be no 6-con-
nected polyhedra; instead, there is the unique plane net
(3,6).

It was shown in part VII that the form of Euler’s rela-
tion relevant to the 3-D polyhedra is : Z— N;+ N,=
2-t, where Z is the number of points (vertices) in the
repeat unit and ¢ is the number of tunnels connecting
each unit to its neighbours. Examination of the deri-
vation of equations (1)—-(4) (Wells, 1956) shows that the
more general form of these equations is

2 fal4—Q2—n)Q2—-p)=2p2—1). ©)

The number (Z) of points in the (topological) repeat
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unit is given by

2n(2—1)

z- e 6
4=G-nC-p) ©

For convenience we give the expanded form of (5) for
two values of p:

p=T1. — fi—6fs—11fs—16fs—...=142—1t) (7)
p=8: =2f;—-8f,—14fs—20fs— ... =16(2—1). (8)
Such equations have positiverootsforz >3 and give the
required relations between the numbers and types of
polygons forming the surfaces of infinite 3-D polyhedra,
fn now being the number of #n-gon faces in the repeat
unit. Whereas each of the equations (1)-(3) has only
one solution for f3, each of the equations (7), (8), etc.
has a set of solutions, one for each value of . (More-
over there may be more than one way of constructing a
polyhedron with specified values of n,p, and ¢ - see
Table 1.) We may therefore draw up a table for each
value of n; Table 3 is for the triangulated polyhedra
(n=3). There is no reason to suppose that all these poly-
hedra could be constructed. Our particular interest
lies in those which are realizable with plane equilateral
triangular faces, the 3-D homologues of the Platonic
solids. We have accordingly approached this problem
in the way described in the next section.
Equation (5) also gives more general forms of equa-
tions (1)-(4), for example:

p=3: 342+ fsFOfs—fi=2fs— ... =6(2—1) (la)

(b)

(c)

Fig.6. (a) Single cubic (10,3) net viewed along 3; axis. Numbers indicate heights of points above the plane of the paper as mul-
tiples of ¢/3, ¢ being the repeat distance along the helix. (b) Fnet as four interpenetrating (10,3) nets, two p- and two L-. (¢) F net
as four interpenetrating (10,3) nets, all p- (or L-). The points shown in () and (c) are only those at one height (say, 0), the four

groups of shaded circles belonging to one net.
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which relates to the (3-connected) reciprocals of the
triangulated polyhedra. For example, a 3-connected
surface tessellation of 8-gons has 3(¢r—2) 8-gons in the
repeat unit. There are also solutions of these equations
corresponding to 3-D polyhedra with faces of more than
one kind; these are the 3-D homologues of the Archi-
medean solids. Examples are (@) the polyhedron formed
from truncated tetrahedra linked through octahedra
to form a diamond-like structure having 3 triangular
and 2 6-gon faces meeting at each vertex; (b) the dia-
mond-like arrangement of truncated octahedra linked
through hexagonal prisms to four other truncated
octahedra (the basic net of faujasite), with 3 4-gons and
1 6-gon meeting at each vertex; (c) the 6-tunnel poly-
hedron formed from truncated octahedra linked
through cubes (the net of zeolite 4), with 2 4-gons and
2 6-gons meeting at each vertex.

Like the triangulated bodies these semi-regular 3-D
polyhedra represent an extension of tessellations be-
yond those possible on the Euclidean plane. Systems

p=3 4 5
43 ;44! 45
428433
4-824282
I

of 4- and 8-gons include 43 (cube) and 428 (octagonal
prism), 4* and 428 (plane nets), and the higher mem-
bers which are only realizable as 3-D polyhedra (to the
right of the full line). The space-filling arrangement of
truncated cuboctahedra (tco) and octagonal prisms
(ps)illustrates two semi-regular 3-D polyhedra, 4282 and
436, and also the breakdown of a polyhedral space-
filling into two different pairs of complementary poly-
hedra. The positions of the centres of the two kinds of
polyhedra are those of the shaded circles (tco) and open
circles (p®) of Fig.5(c). Each tco is in contact with
eight others (sharing 6-gon faces) so that there is a
continuous body-centred system of tco’s. The octa-
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gonal prisms also form a continuous system by sharing
alternate 4-gon faces to form a 4-tunnel 3-D polyhedron
(4282) based on the NbO net which is complementary
to the polyhedron formed from the tco’s. Alternatively,
one half of the tco’s and one half of the P#s form a
6-tunnel 3-D polyhedron 436, based on the P lattice,
which is identical with its complement (Fig. 11):

(tco) +(p¥)s
I'net NbDO net

/
Ltco)x(ps)s
AN

two (tco)(ps)s
P net

Other semi-regular 3-D polyhedra have all faces of
the same kind (e.g. triangles) but vertices of more
than one kind; these could be described as homologues
of the Catalan solids. For example, the polyhedron
formed from icosahedra joined through four icosa-
hedra to form a diamond-like structure has equal
numbers of 5- and 8-connected vertices, 12 of each in
the repeat unit. The relevant equation for triangulated
polyhedra is

3(,'3+2C4+C5$OC6—C7—208—369—...=6(2—t) (9)

which, like equation 1(a) is derived from the modified
Euler equation. Evidently the choice of a particular

Fig.7. Two 6-connected nets which together form an F net.
Numbers indicate heights as multiples of ¢/8.

Table 2. Some 3-D polyhedra and their complements

Polyhedron and complement
IDENTICAL*
(i) Diamond net
Pseudo-diamond

(ii) P pet Skew polyhedra {4,6/4} {6,4/4}
(436), X.11
Polyhedron and complement
DIFFERENT
(i) Diamond net 3,9), X.13
(ii) P net (3,8), X.18
(iii) I and NbO nets (3,9), X.19
4,5), X.23

Regular plane faces
Skew polyhedron {6,6/3}
Half-space-filling by rhombic dodecahedra X.8

Equilateral curved faces

(3,8), X.9(c)
(3,9) VIL.20(a)
(3,10), VIL20()

(3,8), X.9(b)
(3,8), VIL15
4.5), X.22

* The volume of a given 3-D polyhedron with regular plane faces is determined by the edge length only. This is also true of
the curved-face polyhedra of part VII since they are constructed with equilateral faces. The various curvatures (and hence the
volumes of the polyhedra) are not variable for a given tessellation on a given surface. Without the condition of equilateral faces
the volume would be infinitely variable, since the surface of a polyhedron arises by inflating the links of a 3-D net.
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combination of vertex types does not uniquely define
the polyhedron. For example, solutions for 4-tunnel
polyhedra having c¢s and cg vertices include

12 36 60
12 24 36 etc.

which represent 3-D polyhedra having icosahedra at the
points of the diamond net joined through tunnels con-
sisting of respectively 1, 3, 5, etc. icosahedra forming
linear tunnels by sharing a pair of opposite faces. Triv-
ial solutions of any desired degree of complexity can
be devised. The reciprocal tessellations corresponding
to these triangulated polyhedra form further families
of 3-connected nets including, for example, the po-
lyhedron consisting of equal numbers of 5- and 8-
gons — compare the plane net with equal numbers of
4- and 8-gons.

Cs.
Cg:

The 3-D homologues of the Platonic solids

It appears that a limited number of the polyhedra of
Table 1 are realizable with plane regular faces. We con-
sider here only the triangulated bodies. The triangu-
lated Platonic solids have the following numbers of
vertices: 4(tetrahedron), 6(octahedron), and 12(icosa-
hedron). These solids may be placed at the points of
the basic cubic nets and joined through tunnels which
must also be bounded exclusively by equilateral tri-
angles. If there is to be the same number of faces meet-
ing at each vertex of the 3-D polyhedron the tunnels
must not contain vertices other than those which are
to be shared with the finite polyhedra placed at the
points of the net. Therefore the tunnel must be either a
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triangulated polyhedron with 6 vertices and a pair of
parallel faces (octahedron) which will act as a link be-
tween the polyhedra by sharing one face at each end
with the finite polyhedra, or it may be a dodecahedral
tunnel which can link at each end through two faces of
the polyhedron. This tunnel is closely related to the
octahedron from which it is derived by slitting along
the edges accentuated in Fig. 12(e) and then simultane-
ously compressing along the directions AB and CD. If
AB and CD are made equal in length to the other
edges this object represents a group of five regular
tetrahedra, one on each face of a central tetrahedron
[Fig.12()].

Since the octahedral tunnel involves one face of the
central finite polyhedron and the dodecahedral tunnel
two (adjacent) faces, and having regard to the sym-
metry of the central polyhedron, the systems to be
studied are those set out in Table 4. All the polyhedra
with octahedral tunnels can be constructed, but only
one of those with dodecahedral tunnels. The shape
of the latter tunnel can be adjusted within certain
limits, but it is not possible to link octahedra through
either three or four of these tunnels or regular icosa-
hedra through six such tunnels. The dihedral angle
of a regular icosahedron is 138°12°, as compared
with the value 148°24’ of the angle DCE-DCF for the
tunnel built of regular tetrahedra. However, a modified
tunnel, with the eight exterior faces equilateral triangles
and the shaded faces of Figl2(b) isosceles, fits over
pairs of adjacent faces of a ‘cubic’ icosahedron. This
solid, with vertices (330), (330), efc., has 8 equilateral
faces (edge length 4 y6) and six pairs of isosceles faces
with the common edge of unit length. (The dihedral

Table 3. Number of faces in topological repeat units of (3,p) polyhedra

pt 3 4 5 6
7 14 28 42 56
8 8 16 24 32
9 6 12 18 24
10 * 10 * 20
11 T T T T
12 4 8 12 16

* Z non-integral.
1 Number of faces non-integral.

7
70
40
30

*

22
20

8 9 10 11 12
84 98 112 126 140
48 56 64 72 80
36 42 48 54 60
30 * 40 * 50

t 1 i P
24 28 32 36 40

Heavy type distinguishes polyhedra realizable with plane equilateral triangular faces (see Table 4).

Table 4. The triangulated regular 3-D polyhedra

Polyhedron at Octahedral Dodecahedral
points of net zZ tunnels tunnels P f3
Tetrahedron 4 4 Ta 9 12
Octahedron 6 4 Os 8 16
6 Os: 3)* 10 20
8 Os: 4)* 12 24
Icosahedron 12 4 Ia 7 28
6 lo 8 32
8 Is; 9 36

* Not realizable.
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angle over this edge is 126°52".) It is also necessary to
check whether further 3-D polyhedra arise from Archi-
medean solids joined by sharing 4-gon, etc. faces. The
only possibility appears to be the system of snub cubes
(alternately D- and L-) to which reference has already
been made. This polyhedron is in fact the comple-
ment of Ig.

We have, therefore, 7 triangulated 3-D regular solids
(and their complements), and of these the three 4-tun-
nel ones are related in a very simple way to the corres-
ponding finite regular solids:

p= 3 4 5 6 71 8 9

tetra-  octa- icosa- (plane
hedron hedron hedron net) Iy Osx Ta
Number
of ver-
tices 4 8 12
Z 12 8 4

Some points of interest concerning the seven triangu-
lated polyhedra are now noted.

T4 (3,9)-Fig.13

This polyhedron, formed from tetrahedra at the
points of the diamond net joined through octahedra
along the links of that net, can obviously be built from
octahedra only, each sharing 6 edges with other octa-
hedra. If built of such AXy groups the composition is
AX,. The X atoms are in the positions of cubic closest
packing and the structure is derived from the NaCl

THE GEOMETRICAL BASIS OF CRYSTAL CHEMISTRY. X

structure by removing the appropriate rows of 4 atoms.
This is the idealized structure of atacamite, one of the
polymorphs of Cuy(OH),;ClL.

Oy (3,8)-Fig. 14

Octahedra at the points of the diamond net joined
through octahedra along the links of that net form
this polyhedron, which was illustrated in Fig. VII.12
as a polyhedron with curved faces.

Os: (3,10)-Fig. 15
Octahedra at the points of a 6-connected net are con-
nected through octahedral tunnels involving all but

a pair of opposite faces. (This is a different (3,10) poly-
hedron from that of Fig. VII1,20(5).)

Os: (3,12)-Fig. 16

This polyhedron, built from octahedra joined
through 8 octahedral tunnels, has been illustrated
(with curved faces) in Fig.2(b) of the present paper.

I (3,7)-Fig.17.

This is formed from icosahedra linked to four others
through octahedra. The regular icosahedron may be
referred to orthogonal axes which pass through the
mid-points of opposite edges and are axes of twofold
symmetry. The faces fall into two groups, 6 pairs and
8, arranged octahedrally. One half of the latter, a group
of 4 tetrahedral faces, are those involved in the tunnels.
When four such faces of a regular icosahedron are
distinguished from the remainder (e.g. by colouring)

Fig.11. Half-space-filling by equal numbers of truncated cuboctahedra and octagonal prisms.
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the icosahedron is enantiomorphic. It is found by ex-
periment that if all the icosahedra are D- or L- they
do not join together to form a 3-D polyhedron. It is
necessary to join alternate D- and L- icosahedra, as
might be expected from the fact that there is a centre
of symmetry at the mid-point of each link of the dia-
mond net.

Ig (3,8)-Fig.18

This polyhedron, the only one incorporating do-
decahedral tunnels, is built from ‘cubic’ icosahedra. The
complementary polyhedron, an assembly of snub cubes,

has been illustrated in Fig. 10 and with curved faces in
Fig.9(b).

Iy (3,9)-Fig. 19

This polyhedron, built from icosahedra joined to 8
others through octahedral tunnels, has been illustrated
with curved faces in Fig.2(a). The octahedra form a
connected system, each sharing all its vertices with 6
others, the system of octahedra therefore being topo-
logically similar to that in the ReO; and FeF; struc-
tures. The complementary polyhedron, based on the
NbO net, is shown in Fig.20.

It may be found useful to summarize the contents of
this paper and part VII as follows.

(i) On surfaces arising by inflating the links of 3-D
nets various tessellations (»,p) may be inscribed. For
given values of n and ¢ there is apparently an upper
limit for p. For example, the series (3,p), t=4 (co-
planar) extends from (3,7) to (3,12), while (3,p) t=3
apparently comprises only (3,7) and (3,8) (see Table 1).
As in the case of polyhedra and plane nets there is a
tessellation (p,n) reciprocal to each (n,p). A reciprocal
pair such as (4,5) and (5,4) are related in the same
way as the icosahedron, (3,5), and dodecahedron(5,3).

(ii) In some cases topologically different tessellations
having the same values of » and p may be constructed
onsurfacesderived from the same 3-D net— forexample,
the two (3,8) tessellations of Fig.9 (b) and (c) based on
the P net.

(iii) These 3-D polyhedra conform to the general equ-

ation
Z fald—-Q2—-n)2-p)=2p2—1),

) (b)
Fig.12. Relation of dodecahedral tunnel to octahedron (see
text).
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where ¢ is the number of tunnels (the connectedness of
the basic net). Solutions for =0 correspond to the
ordinary finite polyhedra, and those for #> 3 to infinite
3-D polyhedra. The significance of solutions for =1
is not obvious, but =2 corresponds to plane nets
drawn on an infinite cylindrical surface. For example,
if the right-hand side of equation (1) is put equal to
zero there are solutions such as f5=f3, 3f;=f, etc.,
which are equivalent to plane nets, ps=¢;=14, p;3=1,
(07=%, etc.

(iv) Certain of these polyhedra can be constructed
with plane equilateral faces; these are 3-D homologues
of the Platonic solids and of the Archimedean and
Catalan semi-regular solids. Only the triangulated
bodies (3, p) have been studied systematically, of which
there are apparently seven.

(v) The space which is not occupied by a 3-D poly-
hedron may be described as the complementary poly-
hedron. In certain cases the polyhedron and its com-
plement are identical, i.e. the surface divides space into
two equal parts (Table 2). All the five polyhedra of this
kind realizable with equilateral plane faces represent
half-space-fillings by assemblies of finite convex poly-
hedra:

Half-space-filling by:  3-D homologue of:

46 Cubes
64 Truncated octahedra Platonic solids
66 Tetrahedra and
truncated tetrahedra
436 Truncated cuboctahedra  Archimedean
and octagonal prisms solids
4.4 Rhombic dodecahedra Catalan solids

Two examples will illustrate the above relationships:

Pnet — [ (3,8) curved faces — reciprocal (8,3)
Fig. X.9(b) Fig. VI1.28

(3,8) plane faces — complement (/)
Fig. X.10 Fig.X.17

NbO net — [ (4,5) curved faces — reciprocal (5,4)
Fig.X.22 Fig.X.21

(4,5) plane faces — complement <— Inet
Fig.X.23 Fig.X.24
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was a Senior Research Associate of Imperial Chemical
Industries Limited (Dyestuffs Division, Manchester,
England). He would like to thank Mr R. R.Sharpe for
constructing the models shown in Figs.20,23, and 24
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the stereo-photographs.
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