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been applied to many hydrates (El Saffar, 1966, 1968). 
Some of these hydrates have since been studied by 
neutron diffraction. Detailed comparison shows that 
the experimental vectors obtained by n.m.r, are in 
rather good agreement with the corresponding neutron- 
diffraction results. The consistency of the p-p vectors 
given in Table 1 with the H-bonding scheme suggested 
by the X-ray authors, verifies the correctness of the 
H-bonding scheme and testifies to the validity of the 
n.m.r, method. 

The conflict between the n.m.r, results reported here 
and those of Visweswaramurthy (1963) may be resolved 
by modifying Visweswaramurthy's Fig.2 from which 
he obtained all his results. As the Figure stands, the 
Pake curves shown (c axis rotation) do not satisfy the 
point-group symmetry since those curves are not sym- 
metrical about the a axis. The point-group requirement 
is satisfied provided the Pake curve labelled 2 is dis- 
carded and the q) scale is shifted so that a is at • = 20 
or - 3 0  °. If the shift - 3 0  o is accepted, the Pake curves 
labelled 1 and 3 in Visweswaramurthy's Fig. 2 conform 
with the results reported here. 

Distances and angles relating to the hydrogen bonds 
are given in Table 3. It is interesting to note a cor- 
respondence between the O H - - - X  distances and the 
related / O - H - - - X  for MgSzO3.6H20. The shortest 
OH- - -S  bond (3.195 A) and the shortest O H - - - O  
bond (2.658 A) belong to H/Ou.  Equal 'bending' of 
these bonds ( / _ . O - H - - - X = 8  °) may be due to the fact 
that the OH- - -S  and O H - - - O  interactions in this case 
are of equal strength. The same may be said about the 

interactions relating to H2OI. The angles and distances 
relating to HzOni given in Table 3 agree with the gen- 
eral observation that shorter hydrogen bonds tend to 
deviate less from linearity than longer ones (Hamil- 
ton, 1962). This tendency has been recently explained 
(Chidambaram & Sikka, 1968) on the basis of a mod- 
ified Lippincott-Schroeder potential function for the 
hydrogen bond. 

Hydrogen bonds of the type OH-- -S ,  have not been 
studied, to the author's knowledge, by neutron diffrac- 
tion. It is, therefore, considered useful to give the 
angles and distances relating to O H - - - S  bonds found 
in NazSzO3.5H20. This compound was investigated 
by Taylor & Beevers (1952) with the use of X-rays, 
and by Murty & E1 Saffar (1962) by the use of n.m.r. 
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A further study is made of the three-dimensional polyhedra of part VII which conform to the equation 

Xf . [4 -  (2 - n) (2 -p)]  = 2p(2 - t) 

for tessellations (n, p), where t is the number of tunnels connecting each repeat unit to its neighbours. 
An investigation is made of the relation between a 3-D polyhedron and its complement, (i.e. the space 
not occupied by the polyhedron) and of those polyhedra which can be constructed with plane equilateral 
triangular faces, the 3-D homologues of the triangulated Platonic solids. 

In part VII (Wells & Sharpe, 1963) a study was made 
of tessellations (n,p) for which p exceeds the highest 
value attainable in a plane net. For example, in the 
series (3,p) the cases p = 3,4, and 5 correspond to con- 
vex polyhedra, and p = 6 to the plane triangulated net. 

It was shown that certain tessellations (3,p) with p > 7 
may be inscribed on infinite surfaces which arise by 
uniformly inflating the links of 3-dimensional nets to 
form systems of tunnels which meet at the points of the 
original net. The links of the tessellations are geode- 
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sics on surfaces of continuously varying curvature. The 
models described in part VII were made with (curved) 
links of equal length. These 3-D polyhedra may alter- 
natively be described as built of polyhedral units con- 
taining Z points placed at the points of a 3-D net and 
joined through a number (t) of tunnels to identical 
units situated at adjacent points of the net. 

The families (3,p) to (6,p) inclusive were considered 
in turn for t=3,4,5 ,6 ,8 ,  and 12, but for n_>7, only the 
systems (n, 3) (3-connected nets) were listed (Table 3). 
(For the sake of consistency the systems (5,6) for 
t =  10+4m and (7,4) for t = 8 + 3 m  should be included 
as having Z integral and Z >  t, though it seems ex- 
tremely unlikely that any of them could be realized. The 
system (10,3) with t =  5 should be removed from this 
Table because its reciprocal has Z non-integral.) Ex- 
amples were not given of all polyhedra, and in partic- 
ular no detailed study was made of 12-tunnel systems. 
Because a number of new polyhedra have since been 
made and also because it is convenient to see at a glance 
which tessellations can be inscribed on a surface derived 
from a particular net, the information now available 
for triangulated polyhedra is summarized in Table 1. 
Repeat units of four new polyhedra are illustrated (as 
stereo pairs) in Figs. 1-3. 

We now consider two aspects of these 3-D polyhedra. 
The first is the relation between the polyhedron and 
the space not occupied by the polyhedron, which may 
be described as the complementary polyhedron. The 
second concerns the geometrical shape of the polyhe- 
dra. They were illustrated in part VII as tessellations 
on curved surfaces, the polygons being equilateral but 
not equi-angular, since their edges are curved lines on 
surfaces of varying curvature. Certain of the polyhedra 
of Table 1 can be realized with plane equilateral (and 
hence equiangular) faces, p n-gons meeting at each 
point (vertex). Such bodies may be described as regular 
3-D polyhedra, for they are the homologues of the five 
regular finite solids. Only the triangulated bodies will 
be considered in detail in this paper. 

Complementary 3-D polyhedra 

If a polygon is defined as a system of connected line 
segments, six types of regular polygon are recognized: 
digon, plane n-gon, finite skew polygon (lateral edges 
of antiprism), apeirogon (infinite straight line marked 

Off in equal segments), plane zigzag, and helical poly- 
gon. Two of these define a plane and divide it into two 
parts, in one case equal (plane zigzag) and in the other 
unequal (plane n-gon). These polygons are 2-connected 
systems, finite or infinite. The p-connected tessellations 
(p>2)  are inscribable on surfaces and may be des- 
cribed as polyhedra, of which the three simplest types 
are (a) finite (convex) polyhedra (b) infinite plane nets, 
and (c) infinite three-dimensional surfaces. These sur- 
faces divide the whole of space into two parts. In (a) 
the two parts are unequal, in (b) they are equal, and we 
shall see that in (c) there may be equal or unequal divi- 
sion of space. 

We now consider the relation between the two parts 
into which space is divided by the 3-D surfaces of part 
VII, the polyhedron and its complement. In all cases 
we shall suppose that the space not occupied by a 3-D 
polyhedron is also a 3-D polyhedron, i. e. any part of the 
polyhedron is accessible from any other (without pas- 
sing through the surface), and that the same is true of 
the complementary polyhedron. This is not necessarily 
so, for although the 3-D polyhedron has this property 
the complementary space might consist of isolated 
volumes, finite, or infinite one- or two-dimensional. 
This is easily appreciated by visualizing the types of 
hole that may be made in a (supposedly infinite) solid 
block. The holes might be discrete finite holes, infinite 
one-dimensional (sets of unconnected tunnels), or 
infinite two-dimensional systems, equivalent to in- 
flated 2-D nets arranged in parallel planes without 
connections between one net and another. Models of 
these three types are readily constructed from poly- 
hedra such as hexagonal prisms or cubes. Since each 
3-D polyhedron is based on a 3-D net (see Table 1) this 
is also true of complementary polyhedra satisfying the 
above criterion. The relation between a 3-D polyhedron 
and its complement is therefore the relation between 
certain pairs of interpenetrating 3-D nets. 

It seems reasonable to distinguish degrees of inter- 
penetration of 3D nets. If two cubic (10,3) nets, one 
left- and the other right-handed, interpenetrate [Fig. 
4(a)], the connectedness of each point remains the same 
(3). If, however, two nets of the same hand interpene- 
trate, each point is equidistant from 6 others, though 
the helices of the two nets are still distinct [Fig. 4(b)]. 
Contrast the interpenetration of two diamond nets, 
when the helices intertwine around the same axes 

Net t (3,7) 
Cubic (10,3) 3 VII.6(b) 
Diamond 4 X.17 (140 

NbO 4 --  
P 6 VII.6(c) 

1 8 X.3 

Table 1. Triangulated 3-D polyhedra 
[ ] indicates complementary polyhedron. 

(3,8) (3,9) (3,10) (3,11) (3,12) 
VII.11 --  I" t - 
VII.13 X.1 =X.13 (T4t) - I" - 
VII.12=X.14 (Oat) 
VII. 15 [/st] - t [O8t] 
X.9(b) X..18 (160  VlI.20(a) VlI.20(b) I" - 
X.9(c) X.15 (Oat) 
[VII.15] VII.18 X.2(a)=X.19 (/st) - t X.2(b)=X.16 (Ost) 

I" Z non-integral. 
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[Fig.4(c)]. If two nets, A and B, interpenetrate to the 
maximum extent, so that each point of one net is sur- 
rounded symmetrically in three dimensions by points of 
the other net, we might expect each A (B) point in the 
composite system to be surrounded by (a) a tetrahedral 
group of 4B (A), (b) an octahedral group of 6B (A), 
or (c) a cubic group of 8B (A). Case (a) corresponds to 
the interpenetration of two diamond nets to form the 
I lattice (net), and (¢) to the formation of the same net 
from two interpenetrating P lattices (nets). The second 
possibility, (b), where each A point is surrounded octa- 
hedrally by 6B and each B point octahedrally by 6A, 
corresponds to the formation of the NaC1 structure 
from two interpenetrating F lattices. However, this 
pair of interpenetrating nets cannot represent a twelve- 
tunnel polyhedron and its complement for the follow- 
ing reason. Each A (B) point is connected to a number 
p, of A (B) points in its own net, by A-A (B-B) links. 
If A-A and B-B links intersect when the A and B nets 
interpenetrate, such nets cannot represent the relation 
between a 3-D polyhedron and its complement, for the 
points of intersection would lie within both the poly- 
hedron and its complement. In the NaCI structure the 
lines representing the shortest Na-Na  contacts intersect 
those representing the corresponding CI-C1 contacts. 
There is, however, a pair of nets which can interpene- 
trate to give octahedral coordination of both A and B 

(o) (b) 

: ," [ 

(c) 

Fig.4. Pairs of interpenetrating nets: (a) D- and L-forms of 
cubic (10,3), (b) two o- (10,3) nets, and (c) two diamond nets. 
In (a)and (b)lnumbers indicate heights as multiples of c/8 and 
in (c) as multiples of c/4. 

points though not of A by 6B nor of B by 6A. This solu- 
tion emerges from the following alternative approach. 

Regarding P , / ,  and F lattices simply as 6-, 8-, and 
12-connected nets, we examine how they may be bro- 
ken down into two identical interpenetrating nets, or 
more generally, into two (or more) identical or non- 
identical nets. One case where the two component nets 
are different is of special interest in connection with 
the polyhedra of part VII. 

The I net gives the two cases noted above, of which 
(b) is illustrated in Fig. 5(a). The F net may be broken 
down into various numbers of interpenetrating nets. 
Taking an eightfold cell (in which the coordinates of 
the points are those of the special position 32(b) in 
Fd3c) we may separate the 32 points into: 

8 6-connected nets: 4(a) in P4:3; 
4 3-connected nets: 8(a) in 1413; 

or 

2 6-connected nets: 16(c) in Fd3, Fd3m, or F413. 

(The formation of the F lattice by interpenetration of 
four 3-connected (10,3) nets may be of interest in con- 
nection with magnetic properties of alloys. It is inter- 
esting that there are two ways of interpenetrating four 
(10,3) nets, the individual (enantiomorphic) nets being 
either four o- (or h-) or two D- and two L- nets (Fig. 6). 

The two 6-connected nets which interpenetrate to 
form the F lattice are basically of the diamond type. 
The equivalent points 16(c) in Fd3 etc. are the mid- 
points of the links of the diamond net, and when joined 
as in Fig. 7 they outline tetrahedra around the points of 
that net. The edges of the tetrahedra form a 6-connec- 
ted net. Another way of breaking down the F lattice 
into two identical interpenetrating nets is shown in 
Fig. 5(b). The two nets are again of the diamond type, 
but the interbond angles are two of 90 ° and four of 
120 ° . This 'pseudo-diamond net corresponds to the 
half-space-filling by rhombic dodecahedra (Fig. 8); the 
space-filling by rhombic dodecahedra corresponds, as 
is well known, to cubic closest packing of equal spheres 
(In Fig. 8 and subsequent stereo-pairs of 3-D polyhedra 
black faces indicate open ends of tunnels, or faces which 
will be shared in the infinite polyhedron). 

Breakdown of the P lattice into two different nets 
is of interest in connection with complementary poly- 
hedra [Fig. 5(c)]. The large cell contains 8 points, and 
the component nets have Z = 2  (8-connected body- 
centred net) and Z =  6 (planar 4-connected NbO net). 
This is the case to which reference has already been 
made in which a point A of the first net has 6 octahedral 
nearest B neighbours and B has (2A + 4B) octahedral 
nearest neighbours. Examples of pairs of complemen- 
tary polyhedra related in this way are included in Table 
2. Because of this relation between the I and NbO nets 
it follows that to every polyhedron based on the NbO 
net there is a complementary polyhedron built of iden- 
tical 8-tunnel units based on the ! net. The converse is 
not, however, true. If the 8-tunnel polyhedron has 
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cubic symmetry there is a 4-tunnel complementary 
polyhedron built of identical repeat units. If  on the 
other hand the symmetry of the 8-tunnel polyhedron is 
lower (e.g. the tetragonal (3,8) of Fig.VII.18* or the 
orthorhombic (3,7) of Fig. X.3t) there is no complemen- 
tary polyhedron built of identical 4-tunnel units. The 
relation between the complementary 4-tunnel and 8- 
tunnel polyhedra in such cases will not be further dis- 
cussed in the present paper. 

It appears that all pairs of complementary 3-D poly- 
hedra are based on one of the following pairs of inter- 
penetrating nets: 

(i) Two (4-connected) diamond (or'pseudo-dia- 
mond') nets; 

(ii) Two (6-connected) P nets; or 
(iii) I (8-connected) and NbO (4-connected) nets. 

In (i) and (ii) the two complementary polyhedra may 
be identical or they may be different; in (iii) the poly- 
hedron and its complement are necessarily different in 
shape. Some examples are given in Table 2. 

We shall see shortly that only a limited number of 
polyhedra can be built with all faces regular plane 
n-gons. In cases where this is possible it is important, 
when discussing the relation between the polyhedron 
and its complement, to distinguish between the poly- 
hedron (n,p) built with curved (equilateral) faces and 
the topologically similar (n,p) built with plane equi- 
lateral faces. For example, Fig.VII.10 (b) and (c) 

* Fig. 18 of Part VII. 
I" Fig. 3 of Part X (present paper). 

showed repeat units of two (topologically different) 
6-tunnel (3,8) polyhedra; they are repeated here as 
Fig. 9 (b) and (c). The unit (b) has six identical tunnels 
and the corresponding 3-D polyhedron is different from 
its complement. This particular polyhedron can be 
built with plane equilateral faces, when it is equivalent 
to a system of snub cubes (alternately D- and c-) joined 
through their square faces (Fig. 10). The complement 
is the regular 3-D polyhedron I6t of Fig. 18 which has 
a quite different shape and volume, as in the case of 
the curved-face polyhedron and complement. On the 
other hand, the unit (c), which has the two polar tun- 
nels larger than the four equatorial ones, forms a 
(curved-face) polyhedron which is identical to its 
complement (though the two are differently oriented), 
but this polyhedron cannot be built with regular plane 
faces. 

Regular and semi-regular 3-D polyhedra 

From Euler's relation for convex simply-connected 
polyhedra, No-NI+Nz=2, the following equations 
can be derived: 

p = 3 "  3./~ + 2~ +f5 T 0f6-f7 - . . . = 1 2  (1) 

p = 4 :  2 .~T0 . )q -2 j~ -4 f6 -6 fT-  . . . = 1 6  (2) 

p = 5 "  f3--2f4--5fs--Sf6--11fT-- . . . = 2 0  (3) 

p = 6 :  0 j ~ - 4 ~ -  8 ~ -  12.~- . . .  =24  (4) 

e ,,m 

o 

(a) 

D 

• " ° '%° °1  . . . . .  " ; ' ' "  

~'-.__ ,.¢~ 
, ' , , , ,  , : 

: l \ J , l l  / ! ' , : ,  
, i / , g , V , ; i  
~,,:/ "- . " ' -® ', :! , , ' :  ", 

i -" ; 

(b) 

(c) 
Fig. 5. (a) I net as two interpenetrating diamond nets, (b) F net as two interpenetrating pseudo-diamond nets, and (c) P lattice as 

interpenetrating I and NbO nets. 
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or more generally 

Z, f n [ 4 - ( 2 - n ) ( 2 - p ) ] = 4 p ,  

where fn is the number of n-gon faces of which p meet 
at each vertex. It follows that there are only five finite 
polyhedra having all faces of the same kind and all 
vertices p-connected. The most symmetrical forms of 
these polyhedra are the regular (Platonic) solids: 

3-connected: tetrahedron, (3,3), f3=4 ,  cube, (4,3), 
f4=6 ,  
and dodecahedron, (5,3), f5 = 12; 

4-connected: octahedron, (3,4), J~ = 8; and 
5-connected: icosahedron, (3,5), J~ = 20. 

These equations also show that there can be no 6-con- 
nected polyhedra; instead, there is the unique plane net 
(3,6). 

It was shown in part VII that the form of Euler's rela- 
tion relevant to the 3-D polyhedra is : Z - N 1  + N2 = 
2-t, where Z is the number of points (vertices) in the 
repeat unit and t is the number of tunnels connecting 
each unit to its neighbours. Examination of the deri- 
vation of equations (1)-(4) (Wells, 1956) shows that the 
more general form of these equations is 

Z f n [ 4 - ( 2 - n ) ( 2 - p ) ] = 2 p ( 2 - t ) .  (5) 

The number (Z) of points in the (topological) repeat 

unit is given by 
2 n ( 2 - t )  (6) 

Z =  4 - ( 2 - n ) ( Z - p )  " 

For convenience we give the expanded form of (5) for 
two values of p: 

p = 7 : -  f 3 - 6 f 4 - 1 1 f s - 1 6 f 6 - . . . = 1 4 ( 2 - t )  (7) 
p = 8 :  - 2 f 3 - 8 j q -  1 4 f s - 2 0 f 6 - . . .  = 16(2- t ) .  (8) 

Such equations have positive roots for t >_ 3 and give the 
required relations between the numbers and types of 
polygons forming the surfaces of infinite 3-D polyhedra, 
fn now being the number of n-gon faces in the repeat 
unit. Whereas each of the equations (1)-(3) has only 
one solution for f3, each of the equations (7), (8), etc. 
has a set of solutions, one for each value of t. (More- 
over there may be more than one way of constructing a 
polyhedron with specified values of n,p, and t -  see 
Table 1.) We may therefore draw up a table for each 
value of n; Table 3 is for the triangulated polyhedra 
(n = 3). There is no reason to suppose that all these poly- 
hedra could be constructed. Our particular interest 
lies in those which are realizable with plane equilateral 
triangular faces, the 3-D homologues of the Platonic 
solids. We have accordingly approached this problem 
in the way described in the next section. 

Equation (5) also gives more general forms of equa- 
tions (1)-(4), for example: 

p =  3: 3f3+2f4+fs-T-Of6-f7--2fs-  . . .  = 6 ( 2 - t )  (la) 

@ 

(b) 

(a) 

(c) 

Fig.6. (a) Single cubic (10,3) net viewed along 31 axis. Numbers indicate heights of points above the plane of the paper as mul- 
tiples of c/3, c being the repeat distance along the helix. (b) Fnet as four interpenetrating (10,3) nets, two D- and two L-. (C) F net 
as four interpenetrating (10,3) nets, all o- (or L-). The points shown in (b) and (c) are only those at one height (say, 0), the four 
groups of shaded circles belonging to one net. 
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which relates to the (3-connected) reciprocals of the 
triangulated polyhedra. For example, a 3-connected 
surface tessellation of 8-gons has 3 ( t - 2 )  8-gons in the 
repeat unit. There are also solutions of these equations 
corresponding to 3-D polyhedra with faces of more than 
one kind; these are the 3-D homologues of the Archi- 
medean solids. Examples are (a) the polyhedron formed 
from truncated tetrahedra linked through octahedra 
to form a diamond-like structure having 3 triangular 
and 2 6-gon faces meeting at each vertex; (b) the dia- 
mond-like arrangement of truncated octahedra linked 
through hexagonal prisms to four other truncated 
octahedra (the basic net of faujasite), with 3 4-gons and 
1 6-gon meeting at each vertex; (c) the 6-tunnel poly- 
hedron formed from truncated octahedra linked 
through cubes (the net of zeolite A), with 2 4-gons and 
2 6-gons meeting at each vertex. 

Like the triangulated bodies these semi-regular 3-D 
polyhedra represent an extension of tessellations be- 
yond those possible on the Euclidean plane. Systems 

p =  3 4 5 
4 s !44 I 4 s 
~ 8 4 3 8  
4"821.4282 

183 
of 4- and 8-gons include 43 (cube) and 428 (octagonal 
prism), 44 and 428 (plane nets), and the higher mem- 
bers which are only realizable as 3-D polyhedra (to the 
right of the full line). The space-filling arrangement of 
truncated cuboctahedra (tco) and octagonal prisms 
(P8) illustrates two semi-regular 3-D polyhedra, 4282 and 
4s6, and also the breakdown of a polyhedral space- 
filling into two different pairs of complementary poly- 
hedra. The positions of the centres of the two kinds of 
polyfiedra are those of the shaded circles (tco) and open 
circles (pS) of Fig. 5(c). Each tco is in contact with 
eight others (sharing 6-gon faces) so that there is a 
continuous body-centred system of tco's. The octa- 

gonal prisms also form a continuous system by sharing 
alternate 4-gon faces to form a 4-tunnel 3-D polyhedron 
(4282) based on the NbO net which is complementary 
to the polyhedron formed from the tco's. Alternatively, 
one half of the tco's and one half of the PS's form a 
6-tunnel 3-D polyhedron 436, based on the P lattice, 
which is identical with its complement (Fig. 11): 

(tco)2 + (p8)6 
I n e t  NbO net 

/ 
~(tco)z(p8)6 

\ 
two (tco)(Ps)3 
P net 

Other semi-regular 3-D polyhedra have all faces of 
the same kind (e.g. triangles) but vertices of more 
than one kind; these could be described as homologues 
of the Catalan solids. For example, the polyhedron 
formed from icosahedra joined through four icosa- 
hedra to form a diamond-like structure has equal 
numbers of 5- and 8-connected vertices, 12 of each in 
the repeat unit. The relevant equation for triangulated 
polyhedra is 

3c3+2c4-Fc5~-0c6-c7-2c8-3c9-. . .  = 6 ( 2 - t )  (9) 

which, like equation l(a) is derived from the modified 
Euler equation. Evidently the choice of a particular 

. ,  ,- . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig.7. Two 6-connected nets which together form an F net. 
Numbers indicate heights as multiples of c/8. 

Polyhedron and complement 
I D E N T I C A L *  

(i) Diamond net 
Pseudo-diamond 

(ii) P net 

Table 2. Some 3-D polyhedra and their complements 

Regular plane faces 
Skew polyhedron (6,6/3} 
Half-space-filling by rhombic dodecahedra X.8 

Skew polyhedra {4,6/4} {6,4/4} 
(436), X.11 

Polyhedron and complement 
D I F F E R E N T  

(i) Diamond net (3,9), X.13 
(ii) P net (3,8), X.18 

(iii) I and NbO nets (3,9), X.19 
(4,5), X.23 

Equilateral curved faces 

(3,8), X.9(c) 
(3,9) VII.20(a) 
(3,10), VII.20(b) 

(3,8), X.9(b) 
(3,8), VIL 15 
(4,5), X.22 

* The volume of a given 3-D polyhedron with regular plane faces is determined by the edge length only. This is also true of 
the curved-face polyhedra of part VII since they are constructed with equilateral faces. The various curvatures (and hence the 
volumes of the polyhedra) are not variable for a given tessellation on a given surface. Without the condition of equilateral faces 
the volume would be infinitely variable, since the surface of a polyhedron arises by inflating the links of a 3-D net. 
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combination of vertex types does not uniquely define 
the polyhedron. For example, solutions for 4-tunnel 
polyhedra having c5 and c8 vertices include 

c5: 12 36 60 
c8: 12 24 36 etc. 

which represent 3-D polyhedra having icosahedra at the 
points of the diamond net joined through tunnels con- 
sisting of respectively 1, 3, 5, etc. icosahedra forming 
linear tunnels by sharing a pair of opposite faces. Triv- 
ial solutions of any desired degree of complexity can 
be devised. The reciprocal tessellations corresponding 
to these triangulated polyhedra form further families 
of 3-connected nets including, for example, the po- 
lyhedron consisting of equal numbers of 5- and 8- 
gons - compare the plane net with equal numbers of 
4- and 8-gons. 

The 3-D homologues of  the Platonic solids 

It appears that a limited number of the polyhedra of 
Table 1 are realizable with plane regular faces. We con- 
sider here only the triangulated bodies. The triangu- 
lated Platonic solids have the following numbers of 
vertices: 4(tetrahedron), 6(octahedron), and 12(icosa- 
hedron). These solids may be placed at the points of 
the basic cubic nets and joined through tunnels which 
must also be bounded exclusively by equilateral tri- 
angles. If there is to be the same number of faces meet- 
ing at each vertex of the 3-D polyhedron the tunnels 
must not contain vertices other than those which are 
to be shared with the finite polyhedra placed at the 
points of the net. Therefore the tunnel must be either a 

triangulated polyhedron with 6 vertices and a pair of 
parallel faces (octahedron) which will act as a link be- 
tween the polyhedra by sharing one face at each end 
with the finite polyhedra, or it may be a dodecahedral 
tunnel which can link at each end through two faces of 
the polyhedron. This tunnel is closely related to the 
octahedron from which it is derived by slitting along 
the edges accentuated in Fig. 12(a) and then simultane- 
ously compressing along the directions AB and CD. If 
AB and CD are made equal in length to the other 
edges this object represents a group of five regular 
tetrahedra, one on each face of a central tetrahedron 
[Fig.1 2(b)]. 

Since the octahedral tunnel involves one face of the 
central finite polyhedron and the dodecahedral tunnel 
two (adjacent) faces, and having regard to the sym- 
metry of the central polyhedron, the systems to be 
studied are those set out in Table 4. All the polyhedra 
with octahedral tunnels can be constructed, but only 
one of those with dodecahedral tunnels. The shape 
of the latter tunnel can be adjusted within certain 
limits, but it is not possible to link octahedra through 
either three or four of these tunnels or regular icosa- 
hedra through six such tunnels. The dihedral angle 
of a regular icosahedron is 138°12 ', as compared 
with the value 148024 ' of the angle DCE-DCF for the 
tunnel built of regular tetrahedra. However, a modified 
tunnel, with the eight exterior faces equilateral triangles 
and the shaded faces of Fig l2(b) isosceles, fits over 
pairs of adjacent faces of a 'cubic' icosahedron. This 

1 1 1 3  solid, with vertices (~z~0), (240), etc., has 8 equilateral 
faces (edge length ½ I/6) and six pairs of isosceles faces 
with the common edge of unit length. (The dihedral 

Table 3. Number of  faces in topological repeat units of  (3,p) polyhedra 

p t 3 4 5 6 7 8 9 10 11 12 
7 14 28 42 56 70 84 98 112 126 140 
8 8 16 24 32 40 48 56 64 72 80 
9 6 12 18 24 30 36 42 48 54 60 

10 * 10 * 20 * 30 * 40 * 50 
11 t t t ~ 22 t ~ t t 44 
12 4 8 12 16 20 24 28 32 36 40 

• Z non-integral. 
t Number of faces non-integral. 
Heavy type distinguishes polyhedra realizable with plane equilateral triangular faces (see Table 4). 

Table 4. The triangulated regular 3-D polyhedra 

Polyhedron at 
points of net Z 
Tetrahedron 4 

Octahedron 6 

Octahedral Dodecahedral 
tunnels tunnels p f3 
4 T4t 9 12 

4 O4t 8 16 
6 O6t (3)* 10 20 
8 O81 (4)* 12 24 

Icosahedron 12 4 14t 

8 Iat 
6 16t 

7 28 
8 32 
9 36 

* Not realizable. 
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angle over this edge is 126 ° 52'.) It is also necessary to 
check whether further 3-D polyhedra arise from Archi- 
medean solids joined by sharing 4-gon, etc. faces. The 
only possibility appears to be the system of snub cubes 
(alternately D- and g-) to which reference has already 
been made. This polyhedron is in fact the comple- 
ment of I6~. 

We have, therefore, 7 triangulated 3-D regular solids 
(and their complements), and of these the three 4-tun- 
nel ones are related in a very simple way to the corres- 
ponding finite regular solids: 

p =  3 4 5 6 7 8 9 
tetra- octa- icosa- (plane 

hedron hedron hedron net) [4t O4t T4t 
Number 
of ver- 
tices 4 8 12 
Z 12 8 4 

Some points of interest concerning the seven triangu- 
lated polyhedra are now noted. 

T4t (3,9)--Fig. 13 
This polyhedron, formed from tetrahedra at the 

points of the diamond net joined through octahedra 
along the links of that net, can obviously be built from 
octahedra only, each sharing 6 edges with other octa- 
hedra. If built of such AX6 groups the composition is 
AXa. The X atoms are in the positions of cubic closest 
packing and the structure is derived from the NaCI 

structure by removing the appropriate rows of A atoms. 
This is the idealized structure of atacamite, one of the 
polymorphs of Cu2(OH)3Cl. 

O4~ (3,8)-Fig. 14 
Octahedra at the points of the diamond net joined 

through octahedra along the links of that net form 
this polyhedron, which was illustrated in Fig.VII.12 
as a polyhedron with curved faces. 

O6t (3,10)-Fig. 15 
Octahedra at the points of a 6-connected net are con- 

nected through octahedral tunnels involving all but 
a pair of opposite faces. (This is a different (3,10) poly- 
hedron from that of Fig. VII,20(b).) 

Ost (3,12)-Fig. 16 
This polyhedron, built from octahedra joined 

through 8 octahedral tunnels, has been illustrated 
(with curved faces) in Fig. 2(b) of the present paper. 

I4t (3,7)-Fig. 17. 
This is formed from icosahedra linked to four others 

through octahedra. The regular icosahedron may be 
referred to orthogonal axes which pass through the 
mid-points of opposite edges and are axes of twofold 
symmetry. The faces fall into two groups, 6 pairs and 
8, arranged octahedrally. One half of the latter, a group 
of 4 tetrahedral faces, are those involved in the tunnels. 
When four such faces of a regular icosahedron are 
distinguished from the remainder (e.g. by colouring) 

Fig. 11. Half-space-filling by equal numbers of truncated cuboctahedra and octagonal prisms. 
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the icosahedron is enantiomorphic. It is found by ex- 
periment that if all the icosahedra are o- or L- they 
do not join together to form a 3-D polyhedron. It is 
necessary to join alternate o- and L- icosahedra, as 
might be expected from the fact that there is a centre 
of symmetry at the mid-point of each link of the dia- 
mond net. 

I6t (3,8)-Fig. 18 
This polyhedron, the only one incorporating do- 

decahedral tunnels, is built from 'cubic' icosahedra. The 
complementary polyhedron, an assembly of snub cubes, 
has been illustrated in Fig. 10 and with curved faces in 
Fig.9(b). 

Ist (3,9)-Fig. 19 
This polyhedron, built from icosahedra joined to 8 

others through octahedral tunnels, has been illustrated 
with curved faces in Fig.2(a). The octahedra form a 
connected system, each sharing all its vertices with 6 
others, the system of octahedra therefore being topo- 
logically similar to that in the ReO3 and FeF3 struc- 
tures. The complementary polyhedron, based on the 
NbO net, is shown in Fig.20. 

It may be found useful to summarize the contents of 
this paper and part VII as follows. 

(i) On surfaces arising by inflating the links of 3-D 
nets various tessellations (n,p) may be inscribed. For 
given values of n and t there is apparently an upper 
limit for p. For example, the series (3,p), t = 4  (co- 
planar) extends from (3,7) to (3,12), while (3 ,p ) t=3  
apparently comprises only (3,7) and (3,8) (see Table 1). 
As in the case of polyhedra and plane nets there is a 
tessellation (p,n) reciprocal to each (n,p). A reciprocal 
pair such as (4,5) and (5,4) are related in the same 
way as the icosahedron, (3,5), and dodecahedron(5,3). 

(ii) In some cases topologically different tessellations 
having the same values of n and p may be constructed 
on surfaces derived from the same 3-D ne t - -  for example, 
the two (3,8) tessellations of Fig. 9 (b) and (c) based on 
the P net. 

(iii) These 3-D polyhedra conform to the general equ- 
ation 

S f n [ 4 - ( 2 - n ) ( 2 - p ) ] = 2 p ( 2 - t ) ,  

F 

E 

4 

B 

(a) (b) 
Fig. 12. Relation of dodecahedral tunnel to octahedron (see 

text). 

where t is the number of tunnels (the connectedness of 
the basic net). Solutions for t = 0  correspond to the 
ordinary finite polyhedra, and those for t > 3 to infinite 
3-D polyhedra. The significance of solutions for t =  1 
is not obvious, but t = 2  corresponds to plane nets 
drawn on an infinite cylindrical surface. For example, 
if the right-hand side of equation (1) is put equal to 
zero there are solutions such as fs=fT, 3j~=f7, etc., 
which are equivalent to plane nets, ~5= ~07 =1,  (/93 =¼, 
~07=¼, etc. 

(iv) Certain of these polyhedra can be constructed 
with plane equilateral faces; these are 3-D homologues 
of the Platonic solids and of the Archimedean and 
Catalan semi-regular solids. Only the triangulated 
bodies (3,p) have been studied systematically, of which 
there are apparently seven. 

(v) The space which is not occupied by a 3-D poly- 
hedron may be described as the complementary poly- 
hedron. In certain cases the polyhedron and its com- 
plement are identical, i.e. the surface divides space into 
two equal parts (Table 2). All the five polyhedra of this 
kind realizable with equilateral plane faces represent 
half-space-fillings by assemblies of finite convex poly- 
hedra: 

Half-space-filling by: 3-D homologue of: 

46 Cubes 
64 Truncated octahedra 

Platonic solids 66 Tetrahedra and 
truncated tetrahedra 

436 Truncated cuboctahedra Archimedean 
and octagonal prisms solids 

4. 4 Rhombic dodecahedra Catalan solids 

Two examples will illustrate the above relationships: 

P net -+ [ (3,8) curved faces --> reciprocal (8,3) 

/ Fig. X.9(b) Fig. VII.28 
(3,8) plane faces ~ complement (I6t) 

Fig.X.10 Fig.X.17 

NbO net --~ (4,5) curved faces--+ reciprocal (5,4) 
Fig.X.22 Fig.X.21 

(4,5) plane faces -+ complement <-- Inet 
Fig. X.23 Fig. X.24 

Much of this work was carried out while the author 
was a Senior Research Associate of Imperial Chemical 
Industries Limited (Dyestuffs Division, Manchester, 
England). He would like to thank Mr R. R. Sharpe for 
constructing the models shown in Figs.20,23, and 24 
and the staff of the Photographic Section for producing 
the stereo-photographs. 
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